Based on historical studies, we know that indiscriminate administration of fluids is associated with poor outcomes in both surgical and non-surgical patients. More recent literature suggests the use of goal directed fluid protocols utilizing dynamic physiologic parameters to guide fluid resuscitation improves patient outcomes and reduces overall healthcare costs. Gone are the days of relying on inadequate measures such as CVP, BP, HR, and UOP to determine a patient’s volume status. A 2020 analysis done by Johnston et al, demonstrated that a ‘goal-directed volume resuscitation protocol centered

Acute Kidney Injury (AKI) affects 20-40% of cardiopulmonary bypass (CPB) patients. Low oxygen delivery (DO2) is a predictor of AKI after CPB [3]. Applying goal-directed perfusion (GDP) during CPB can significantly help improve patient DO2 and reduce AKI. This can be accomplished in concert with implementing blood conservation techniques and maintaining consistent levels of DO2 during CPB [3]. There are several blood conservation techniques that can be utilized for selected patients. One of the most fundamental techniques is the retrograde autologous prime (RAP), which can maximize hematocrit (HCT) by minimizing dilutional fluid administered to the patient when instituting CPB [3]. In order to successfully maximize crystalloid fluid removal, anesthesia needs to help support the patient's blood pressure, staying within the recommended 10% of baseline mean arterial blood pressure. Perfusion should communicate with anesthesia and slowly implement the RAP process after an adequate activated clotting time has been achieved. Volume displaced will vary but removal of most of the crystalloid in the circuit is usually possible. This is a simple perfusion intervention that maximizes the hematocrit on

Many of the studies supporting the use of goal-directed therapy (GDT) come from single center reports. While the evidence-base is still evolving, it is important to accurately understand the current evidence-based real-world outcomes published to date. Moreover, this also offers opportunities to recognize what additional studies need to be done to improve perioperative outcomes utilizing GDT.

Qu and colleagues have offered a rigorous
PROTOCOLS:
GOAL DIRECTED THERAPY (GDT) – THE OVERVIEW
Vicki Morton, DNP, AGNP, Providence Anesthesiology Associates, Charlotte, NC

on patient fluid responsiveness is associated with significantly reduced risk for AKI after cardiac surgery." The authors further recommended "protocol-driven approaches should be employed in intensive care units to improve outcomes”.

Implementing such protocols in a cardiac surgery intensive care unit can prove to be challenging for a multitude of reasons. Outdated practices of evaluating volume status are difficult to evolve.

THE BEST WAY TO CREATE A CULTURE OF CHANGE IS TO UNDERSTAND THE OUTCOME DATA AS IT RELATES TO VARIABILITY IN FLUID ADMINISTRATION.

The best way to create a culture of change is to understand the outcome data as it relates to variability in fluid administration. Utilizing local data to demonstrate the need for improvement can be powerful and provide the "why" behind changing practice. Additionally, this can help illuminate financial implications to the organization. Sharing a portion of the large body of evidence supporting goal directed therapy (GDT) can further support the case for change. Creating multidisciplinary consensus and a standardized approach to postoperative fluid resuscitation has been demonstrated to have a positive impact on outcomes.

There are several minimally invasive and non-invasive products on the market that offer the ability to measure stroke volume, stroke volume variation, cardiac output, and EA Dyne. The goal of GDT is to optimize intravascular volume and oxygen delivery. Figure 1 provides an example of a straightforward GDT algorithm in use at our institutions.

Figure 1: Example of a Goal directed Therapy Algorithm
PERFUSION:
GOAL DIRECTED PERFUSION AND CARDIOPULMONARY BYPASS
Christa B. Kampert, CCP University of Maryland Saint Joseph Medical Center, Towson, MD
Holly Tannehill, CCP, Adventist HealthCare White Oak Medical Center, Silver Spring, MD

>> continued from page 1

CPB, thereby lowering the risk of allogeneic transfusion (4). Maintaining DO2 at a level >280 mL O2/mm/m2 during moderate hypothermia (>32°C) is critical for optimal perfusion during CPB. Studies suggest avoiding a persistently low DO2 during CPB can help reduce the risk of AKI (2,3). The three variables of the DO2 formula are flow, hematocrit and O2 Hgb saturation. Focusing on flow and minimizing hemodilution is vital to the GDP strategy. Using electronic perfusion recording (EPR), capturing real-time information during CPB including DO2 and pump flows, can optimize patient perfusion(3). Perfusionists without EPR can input the flow, hematocrit, and arterial O2 saturation to calculate DO2 on a free downloadable online application (Figure 1). The perfusionist should monitor DO2 at 10–20 minute intervals (5). Utilizing GDP and specifically focusing on minimizing hemodilution, increasing pump flow, and monitoring DO2 during CPB may help improve patient outcomes (1). The GDP strategy has been shown to be effective in reducing AKI and can be integrated into local perfusion protocols as part of a multi-disciplinary team approach to optimize patient recovery (1,2).

TRANSESOPHAGEAL ECHOCARDIOGRAPHY (TEE):
IS INTRAOPERATIVE TEE THE ULTIMATE GOAL DIRECTED THERAPY MONITOR?
Michael C. Grant, MD, MSE, The Johns Hopkins University School of Medicine, Baltimore, MD

>> continued from page 1

that TEE may influence surgical and anesthetic decision-making or augment the interpretation of hemodynamic perturbation in the operating room, most non-academic centers have been slow to adopt the widespread use of TEE for CABG procedures. Recently, a team of investigators from Johns Hopkins University School of Medicine published a study designed to evaluate the association between intraoperative TEE and outcomes following isolated CABG.² The study, which utilized the Society of Thoracic Surgeons (STS) Adult Cardiac Surgery Database, examined 1.2 million patients undergoing CABG from 2011-2019, of which 680,000 (54%) were performed with intraoperative TEE. Interestingly, the use of TEE in CABG has increased on an annual basis in a linear fashion, from 40% in 2011 to >60% in 2019, and patients who received TEE had higher risk profiles, including greater incidence of major comorbidity, urgent/emergent procedures and mechanical circulatory support. Despite this, after adjusting for patient-level demographic and clinical variables as well as major institutional confounders, including region, academic standing and volume, propensity-matching analysis revealed that intraoperative TEE was associated with a reduction in operative mortality (death from any cause within 30 days of surgery). This finding was driven by significant reductions in mortality among moderate (STS risk 4-8%) and high (STS risk >8%) risk patients.

There are several mechanisms by which TEE may confer improved outcomes, including: assistance with de-arching, early identification of pericardial effusion or aortic dissection and recognition of acute regional wall motion/valvular abnormalities. In illustration of this point, patients who received TEE were nearly 5-fold more likely to have an unplanned valvular procedure. In addition, TEE provides vital information regarding resuscitation, allowing for the targeted administration of fluids and vasoactives based upon real time assessment of fluid status and global cardiac function. As a result, intraoperative TEE may well represent the true gold standard in goal-directed therapy, regardless of the cardiac surgical procedure.

Figure 1: Free online DO2 calculator application (reproduced with permission, for details email christakampert@umm.edu)

Table 1: DO2 Calculator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA (m²)</td>
<td>Patient BSA</td>
</tr>
<tr>
<td>CPB Flow (L/min)</td>
<td>Enter CPB Flow</td>
</tr>
<tr>
<td>HCT (%)</td>
<td>Enter HCT</td>
</tr>
<tr>
<td>PO₂</td>
<td>Enter PO₂</td>
</tr>
</tbody>
</table>

Free online DO2 calculator application (reproduced with permission, for details email christakampert@umm.edu)

POST-OP:

| RECENT META-ANALYSIS SHEDS LIGHT ON EVIDENCE BEHIND GDT IN CARDIAC SURGERY |
| Subhasis Chatterjee MD, Baylor College of Medicine/Texas Heart Institute, Houston, TX |

>> continued from page 1

systematic review and meta-analysis entitled the “Significance of perioperative goal-directed hemodynamic approach in preventing postoperative complications in patients after cardiac surgery: a meta-analysis and systematic review.” They reviewed 9 randomized controlled trials which included 1148 patients after cardiac surgery comparing pre-emptive hemodynamic interpretation (GDT) versus standard hemodynamic therapy (control). The top line conclusions were that GDT was not associated with a difference in mortality, time of mechanical ventilation, and ICU length of stay (LOS) but was associated with an overall hospital LOS reduction. So, while there are not a lot of sophisticated economic analyses, it is reasonable to interpret those data as suggesting a cost savings with GDT. Interestingly, all of the studies in this meta-analysis were performed outside of North America.

Looking more closely at the study details, four of the studies focused on intraoperative GDT and five focused on postoperative GDT. For the most part results were similar when looking at the studies combined or separated as intraoperative or postoperative. Notably however, while the use of intraoperative GDT did not appear to reduce the time of mechanical ventilation, the use of postoperative GDT did have a favorable reduction in mechanical ventilation time. Thus, there is a growing evidence base supporting the use of GDT in enhanced recovery programs, particularly in the postoperative setting. Continued refinement and advanced algorithms to evaluate the efficacy of GDT with respect to prevention of acute kidney injury, reduced postoperative atrial fibrillation, and mitigation of other postoperative complications is necessary.

INTRAOPERATIVE GDT AT VIRTUA OUR LADY OF LOURDES

One Program’s Experience with Minimally Invasive Hemodynamic Monitoring for GDT

Arthur T. Martella, MD, Richard H. Bengel, PA
Virtua Our Lady of Lourdes Hospital, Camden, NJ

The use of minimally invasive hemodynamic monitoring (MIHM) in the cardiac surgery intensive care setting is gaining popularity for many reasons including improved ambulation and continuous advanced monitoring that has not been previously afforded by invasive devices. The usage of MIHM at our institution is a mainstay for lower risk cardiac surgical patients as well as postoperative patients who appear to be deteriorating. As our experience with MIHM has grown, we hypothesized that hemodynamic optimization prior to surgery may impact outcomes. Suboptimal preoperative oral intake compounded by diuretics has led to many of our patients presenting to the operating room in a hypovolemic state.

These discussions led our team to consider a trial at our institution of 20 patients undergoing on-pump CABG and 20 patients undergoing RCABG. We plan to compare them to historical controls. Our hypothesis is that by utilizing our MIHM algorithm to hemodynamically optimize patients prior to CPB or chest insufflation, we will improve outcomes. We plan to compare vasopressor usage on admission to the Cardiac Surgery ICU, postoperative AKI, time to initiation of beta blocker, ICU length of stay and Hospital length of stay. For the CPB group we will also look at DO2 and indices while on cardiopulmonary bypass, and in the RCABG group time at target cardiac index and MAP. We look to have our small data sample completed within Q1 of 2022. We believe that by using a protocolized approach and MIHM with our confidence in MIHM, we could improve outcomes.

Core ERAS Team at Virtua Our Lady of Lourdes Hospital, Camden, NJ: From left to right: Abigail Stroud, CCP, Brian Schwartz, CCP, Qiong Yang, MD, Richard Bengel, PA, Josh Park, PA, Melissa Frunci, CCRN. Team members not pictured: Arthur Martella, MD, Charles Stivala, MD, Saad Rasheed, MD, and : Hitoshi Hirose, MD.
RECENT ERAS® CARDIAC PUBLICATIONS:

UPCOMING MEETINGS:

American Association for Thoracic Surgery 102nd Annual Meeting, May 13-17, 2022 - Boston, MA

ERASR Society 8th World Congress, June 1-3, 2022 - Madrid, Spain

European Association for Cardio-Thoracic Surgery 36th Annual Meeting, October 5-8, Milan, Italy
EXECUTIVE BOARD
Cheryl Crisafi MSN, RN, CNL
Nurse Coordinator ERAS® Cardiac Society
Daniel Engelman, MD
President, Cardiac Surgeon
Baystate Medical Center, Springfield MA, USA
Michael Grant, MD
Vice President
Cardiac Anesthesia and Critical Care Medicine
Johns Hopkins, Baltimore, MD, USA
Alex Gregory, MD
Secretary, Cardiac Anesthesia
University of Calgary, Canada
Kevin Lobdell, MD
Treasurer
Cardiac Surgeon
Atrium Health, North Carolina, USA
Rakesh Arora, MD, PhD
Cardiac Surgeon
University of Manitoba, Winnipeg, Canada
V. Seen Reddy, MD, MBA, FACS
Cardiac Anesthesia
Centennial Heart & Vascular Center, Nashville, TN, USA
Marjan Jahangiri, MBBS, MS, FRCS, FRCS (CTh)
Cardiac Surgeon
St. Georges University of London
Ed Boyle, MD
Cardiac Surgeon
University of Virginia, Charlottesville, VA, USA
Yoan Lamarche, MD
Cardiac Surgeon Intensivist
Montreal Heart Institute
Jerrold H Levy, MD, FAHA, FCCM
Cardiac Anesthesia
Duke University Medical Center
Durham, North Carolina, USA
Louis Perrault, MD
Cardiac Surgeon
Montreal Heart Institute, Montreal, Quebec, Canada
John Pirris, MD
Cardiac Surgeon
University of Florida Health, Gainesville, FL USA
Eric Roselli, MD
Cardiac Surgeon
Cleveland Clinic, Cleveland, OH, USA
Judson Williams, MD, MHS
Cardiac Surgeon
WakeMed Heart & Vascular
Raleigh, North Carolina, USA
Alex Zorbock
Cardiac Anesthesia
University of Munster, Munster, Germany
Mary Zellinger, Aprn-Ccns, Mn, Anp-Bc, Ccorn-Csc, Fccm, Faan
Critical Care Nursing
Emory University Hospital
Atlanta, Georgia, USA
SUBJECT MATTER EXPERTS
Keith Allen, MD
Cardiac Surgeon
Mid America Heart and Lung Surgeons
Kansas City, MO, USA
Ramon Arredla-Torres
Cardiac Surgeon
West National Medical Center, Mexico
John Augoustides, MD
Cardiac Surgeon
Penn Medicine Clinical Care, Philadelphia, PA, USA
Daniel Beckles, MD
Cardiac Surgeon
Baylor, Scott, and White Health, Temple, TX USA
Walid Ben Ali, MD
Cardiac Surgeon
Montreal Heart, Montreal, Quebec, Canada
Jack H. Boyd, MD
Cardiac Surgeon
Stanford University School of Medicine
Jessica Brown, MD
Cardiac Anesthesia
Southern Methodist, Houston, TX, USA
Andre Denault, MD
Cardiac Anesthesia
Montreal Heart, Montreal Quebec, Canada
Jill Engel, RN
Cardiac Nursing
Duke University Medical Center
Durham, North Carolina, USA
Nick Fletcher, MBBS, FRCA, FFICM
Cardiac Anesthesia
St. Georges University of London
London SW17 ORE, UK
Bram Geller, MD
Critical Care, Cardiology
Penn Medicine Clinical Care
Philadelphia, PA, USA
Kamrouz Ghadimi, MD
Cardiac Anesthesia
Duke University School of Medicine
Durham, North Carolina, USA
Leah Gramlich, MD
Physician Nutrition Specialist Gastroenteroslogist
University of Alberta
Hilary P Grocott, MD, FRCP, FASE
Cardiac Anesthesia
University of Manitoba, Winnipeg, Canada
Jacob T Gutsche, MD, FASE, Fccm
Cardiovascular Critical Care
University of Pennsylvania
Philadelphia, PA, USA
Matthias Kirsch, MD
Cardiac Surgeon
Centre Hospital Universitaire Vaudois
Lausanne, Switzerland
Gudrun Kunst, MD, PhD, FRCA, FFICM
Cardiac Anesthesia
King's College Hospital, Denmark Hill, UK
Claude Laffamme, MD
Cardiac Anesthesia
Sunnybrook HSC, Toronto
Michael Manning, MD, PhD
Cardiac Anesthesia
Duke University, Durham, NC, USA
Alison Nelson, RN
ERAS Provincial Manager
Alberta Health Services, Alberta CA
Gregg Nelson, MD, PhD
Secretary of the ERAS® Society
University of Calgary
Calgary, Alberta, Canada
Tom Nguyen, MD
Cardiac Anesthesia
Memorial Hermann Texas Medical Center, Houston, TX, USA
Prakash A. Patel, MD, FASE
Cardiac Anesthesia
University of Pennsylvania
Philadelphia, PA, USA
Nathalie Roy, MD, FRCSC
Cardiac Surgeon
Boston Children's Hospital, Boston, MA, USA
Bram Geller, MD
Cardiac Anesthesia
University of Alberta, Alberta, CA
Andrew Shaw, MD
Cardiac Anesthesia
University of Giessen und Marburg, Germany
Christian Stoppe, MD
Cardiac Anesthesia
Aachen University, Aachen, Germany
Vinod Thourani, MD
Cardiac Surgeon
Piedmont Heart Institute, Atlanta, GA USA
Keenan Yount, MD
Cardiac Surgeon
University Virginia, Charlottesville, VA, USA

ADVISORY BOARD
Ed Boyle, MD
Cardiac Surgeon
St. Charles Medical Center, Bend Oregon, USA
Albert Cheung, MD
Cardiac Anesthesia
Stanford University Medical Center, Stanford, CA, USA
Joerg Ender, MD
Cardiac Anesthesia
University of Leipzig, Leipzig, Germany
Richard Engelman, MD
Cardiac Surgeon
Baystate Medical Center, Springfield, MA, USA
Marc W. Gerdsch, MD
Cardiac Surgeon
Franciscan Health Heart Center, Indianapolis, IN, USA
Karim Jabr, CCP, LP, CSSBB
Cardiovascular Perfusion
Navicent Health Medical Center
Macon, GA, USA
Ali Khoynezhad, MD
Cardiac Surgeon
Long Beach Memorial Heart & Vascular Institute, Long Beach, CA, USA
Michael Grant, MD
Cardiac Anesthesia
University of Virginia, Charlottesville, VA, USA
ERAS® stands for Enhanced Recovery after Surgery, and we improve surgical care and recovery through research, education, audit, and implementation of evidence-based practices. In early 2017, a group of cardiac surgeons, anesthesiologists, and intensivists first met to establish the Enhanced Recovery After Cardiac Surgery (ERACS®) Society to achieve these goals for patients undergoing heart surgery. This initial organization's work led to the publication of the first-ever expert consensus recommendations for a cardiac surgical enhanced recovery protocol. We have since joined with the ERAS® Society and have established an organization of multinational experts representing all aspects of healthcare delivery. ERAS® Cardiac is a non-profit organization with the mission to develop evidence-based expert consensus statements promoting best practice recovery practices. The goal is to provide hospitals with better guidance for developing local protocols that are part of a continuous quality improvement process for better patient care, and reduce postoperative complications and costs after heart surgery.

Terri Haber, MPH
Executive Director, ERAS® Cardiac Society
t.haber@erascardiac.org

Donna Frankel
Office Manager ERAS® Cardiac Society
donnaerasc@gmail.com

Bonnie Engelman, MA
Director of Sponsor Relations ERAS® Cardiac Society
bengelman@erascardiac.org

ERAS® Society
The ERAS® Society is an international organization with enhanced recovery guidelines for several surgical sub-specialties. Beginning as the ERAS® Study Group in 2001, team leaders Professor Ken Fearon (University of Edinburgh) and Professor Olle Ljungqvist (Karolinska Institutet) spearheaded the developments made in multimodal surgical care. The ERAS® Study Group soon discovered that there were a variety of local traditions in practice, as well as an inconsistent application of evidence-based best practices. This prompted the group to examine the process of change from tradition to best-practice. Since its inception, the ERAS® Society has expanded to include several subspecialties, emphasized the benefits of standardized best-practices across the continuum of the perioperative period, highlighted the importance of data-driven self-evaluation, and promoted the improvement of patient care.

Our Organizational Structure
Our ERAS® Cardiac Society is made up of experts from around the world, including participation from all members of the healthcare team. Our members strive to implement enhanced recovery principals at their local institutions while advancing improved patient care internationally through collaboration, education, and dissemination of up-to-date knowledge regarding optimal perioperative care. Our organization is divided into an Executive Board, Advisory Board, and a pool of Subject Matter Experts.